

Rational use and interpretation of Toxicology tests

Dr SH Tsui, Toxicology Subcommittee

JCM May 2012

Contents

Ten principles (commandments) on use of ancillary tests in Toxicology

To Illustrate by real cases

ECG not included in this talk

Commandment 1

Rely on your clinical judgment; perform a test only when it is indicated

Emergency Physicians: The last fortress to practice 'Clinical' Medicine?

Case

- F 3y.o.
- Witnessed by grandma to have overdosed ~
 30ml of Chlorpheniramine (piriton)
- Patient was sleepy on arrival
- Attempted to take blood for paracetamol, salicylates and ethanol levels; but with great difficulty.....

Is blood test indicated in this case?

- Screening for paracetamol, salicylates and ethanol levels only advocated for suicidal patients who may hide or unable to give a reliable history
- Or unexplained liver toxicity, renal toxicity or acidosis
- May pick up potentially treatable poisoning

Acetaminophen and Salicylate Serum Levels in Patients With Suicidal Ingestion or Altered Mental Status

KARL A. SPORER, MD,* HASSAN KHAYAM-BASHI, PHD†

Case

- M51, good past health
- Hit by a private van at unknown speed while pushing a cart (working)
- BP 175/91, P 98 bpm, T 35.9C
- RR 16/min, SpO₂ 100%
- GCS: E3 V2 M5
- 'Confused'
- Pupils 4mm E&R

Case

- Left frontal wound
- Glucose 8.4, Hb 14
- Trauma series: No #
- FAST: -ve
- ECG: SR

- Urine ACON.... Faint line next to ketamine
- Any comment?

Cause of confusion

Commandment 2

Know the implications and limitations of the tests concerned

- Point-of-care urine test for substance of abuse (ACON®)
- Laboratory Toxicology screening test

Case

- M/ 24, good PH
- Quarreled with girlfriend recent 1 week
- Had dinner with GF and returned home
- Found confused the next morning by relatives
- 2 empty bottles found alongside: ~ 200 tabs of sleeping pills containing valerian and cyproheptadine

Case on arrival

- GCS E4M5V2 (11/15),
- BP 150/97, P 104
- SpO2 100% (High flow O2), RR 22
- Temp 36.1 °C, dry skin
- Pupil 3mm, reactive
- Power 3/5
- Bladder distended

Case

- Glucose 5.6, i-stat normal
- ECG: SR 100/min, QRS 100ms, QTc 412ms
- Foley inserted
- Urine ACON test
 - To do or not to do?
- Urine ACON test: +ve
 - Are you concerned?
 - Will you give physostigmine?

ACON® DOA Kits

- Lateral flow chromatographic immunoassay
- For qualitative detection of multiple drugs and its metabolites
- Fast and easy to use
- Presence of drug above cut-off conc:
 - Saturate all the binding sites of Ab
 - No labeled Ab retained in captured zone
 - No colored line → +ve

ACON® Kit

Control (C):

- A colored line will always appear at the control line region
- Indicating sufficient specimen volume, adequate membrane wicking and correct procedure technique
- Make sure the Control line appear before you accept the result

- How to interpret this result?
- Only positive or negative
- Weakly positive NOT exist!!
- Faint line means negative

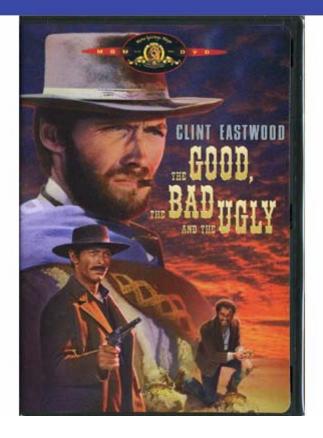
ACON® Kit

Test	Calibrator	Cut-off (ng/ml)
Amphetamine (AMP)	D-Amphetamine (P)	1000
Barbiturates (BAR)	Secobarbital (M)	300
Benzodiazepines (BZO)	Oxazepam (M)	300
Cannabinoid (THC)	11-nor-THC-9 COOH (P)	50
Cocaine (COC)	Benzoylecgonine (M)	300
Ketamine (KET)	Ketamine (P)	1000
Methadone (MTD)	Methadone (P)	300
Methylenedioxymeth- amphetamine (MDMA)	D,I Methylenedioxy- Methamphetamine (P)	500
Methamphetamine (MET)	D-Methamphetamine (P)	1000
Opioids/Morphine (MOP)	Morphine (P,M)	300
Tricyclic Antidepressants (TCA)	Nortriptyline (P,M)	1000

Bedside drug screening

Specific Limitations:

False positive (cross reactivity)


False negative

The Good, the Bad and the Ugly (by YC Chan)

The Good:

Cocaine
Cannabinoid
Barbituates
Methadone

The Bad:
Amphetamine
MDMA
Opioids
Benzo
PCP

The Ugly: TCA

General Limitations

- Negative ACON test does not rule out poisoning, it only covers a number of abusive drugs
- True positive only indicates exposure, not necessarily poisoning; and may not be even recent exposure
- Technical error: adulteration of urine by dilution, addition of acids, bases, oxidizing agents (bleach, nitrite, peroxide, peroxidase) etc. may produce erroneous results

Laboratory Toxicology Screening Test

- Usually works on urine, blood and gastric aspirates
- By employing multiple analytic methods: Immunoassay, HPLC, GC, GC/MS, LC/MS/MS
- More comprehensive but still not exclusive
- Panels established by individual laboratory varies and performance also varies

TABLE 6–6. Positive and Negative Predictive Values of Toxicology Screens

Sensitivity/	Prior Probability		
Specificity (%/%)	10%	50%	95%
98/98 (excellent)	84%/99.8%	98%/98%	99.9%/72%
80/95 (mediocre)	64%/98%	94%/83%	99.7%/20%

+ve and –ve predictive values of two hypothetical toxicology screens

Goldfrank's 9th

Laboratory Toxicology Screening Test

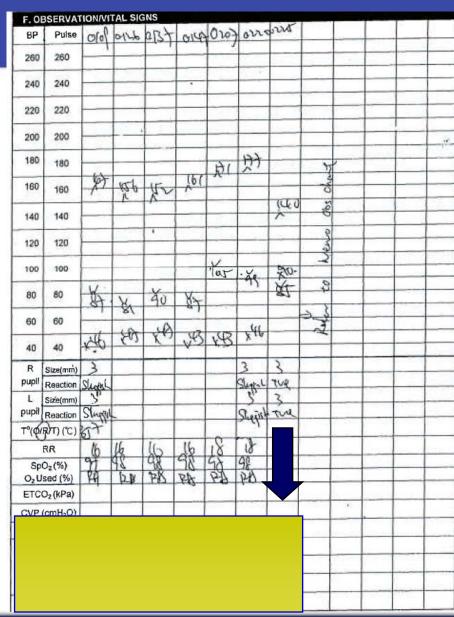
Applications

- May provide additional information to confirm an episode of poisoning
- Sometimes may give unexpected results and shine light on difficult cases
- But most of the time NO ONE is paying attention to the result when it comes back few days later
- Role of A&E Toxicology Team

Case

- M/51
- Caucasian living with friend in Central
- Occupation: pilot
- Good past health
- Found vomiting with altered consciousness at home by his friend
- ? Limb twitching
- his friend claimed that patient had gone out to a pub in Wan Chai tonight; unsure if he had taken alcohol or not

Vital sign and P/E on arrival to AED


- BP 167/87mmHg, P 46 bpm
- Temp 35.7C (rectal)
- RR 16
- GCS E1V1M6 (total 8/15)
- SpO2 97% on RA
- Pupil size 3mm bilaterally, reactive
- Resp and CVS: unremarkable
- Abd: soft
- neck soft
- Neurological exam: unremarkable
- small area of abrasion at right forehead

A typical clinical course follows F. OBSERVATIONIVITAL SIGNS BP Pulse of of arts plat on a pla

You suspect GHB poisoning

Urine sent to laboratory for Toxicology screening

Here is the result

Date Collected: 09/11/08 01:45

Clinical Details: AGITATED

pH 6
Ketones Negative
Glucose Negative

Toxicology screening (Urine):

None of the compounds on the following list are detected.

The following drugs (if present) can be identified by this laboratory:

ANALGESICS ANTIHISTAMINES Carbamazepine ANTIDEPRESSANTS Cimetidine Mefenamic acid Diphenhydramine Amitriptyline Meperidine Amoxapine Pheniramine Cyproheptadine Desipramine Dextromethorphan Naproxen SYMPATHOMIMETIC AMINES Haloperidol Paracetamol Doxepin Imipramine Ketamine Propoxyphene Amphetamine Lidocaine Salicylate Loxapine MDMA (ecstasy) Maprotline Methamphetamine Metoprolol Nortriptyline Ephedrine/Pseudo-Phenytoin Phentermine Triamterene BARBITURATES Trazadone Trimipramine Amobarbital Phenylpropanolamine Trimethoprim Procainamide Aprobarbital Barbital HYPNOTICS NARCOTICS Propranolol Butabarbital Benzoylecgonine/cocaine Ouinine/Ouinidine Glutethimide Pentobarbital Codeine Methaqualone Phenobarbital Methadone PHENOTHIAZINES Secobarbital BENZODIAZEPINES Morphine

Commandments 3 & 4

3. Has a fair idea what tests are provided by your hospital laboratory, cluster laboratory and Toxicology Reference Laboratory

4. Maintain good communication with your laboratory counterparts

Every laboratory is different

- Some tests are routinely done
- Some tests cannot be done
- Some tests can be done on special request

Often not Detected by Toxicology Screens		
Antidysrhythmics	γ-Hydroxybutyrate ←	
Anticholinergics	Herbal preparations	
Anticoagulants	Hypoglycemics	
Anticonvulsants	in afterwarms and walk on take	
Antipsychotics	Isopropanol	
β-Adrenergic agonists and antagonists	Ketamine Lithium	
Calcium channel blockers	Lysergic acid diethylamide	
Carbon monoxide	Methylene dioxyamphetamine	
Clonidine	Methylene dioxymethamphetamine	
Cyanide Cyanide	Metals Metals	
"Designer drugs"	Methanol	
Digoxin	Methemoglobin	
Diphenhydramine	Solvents	

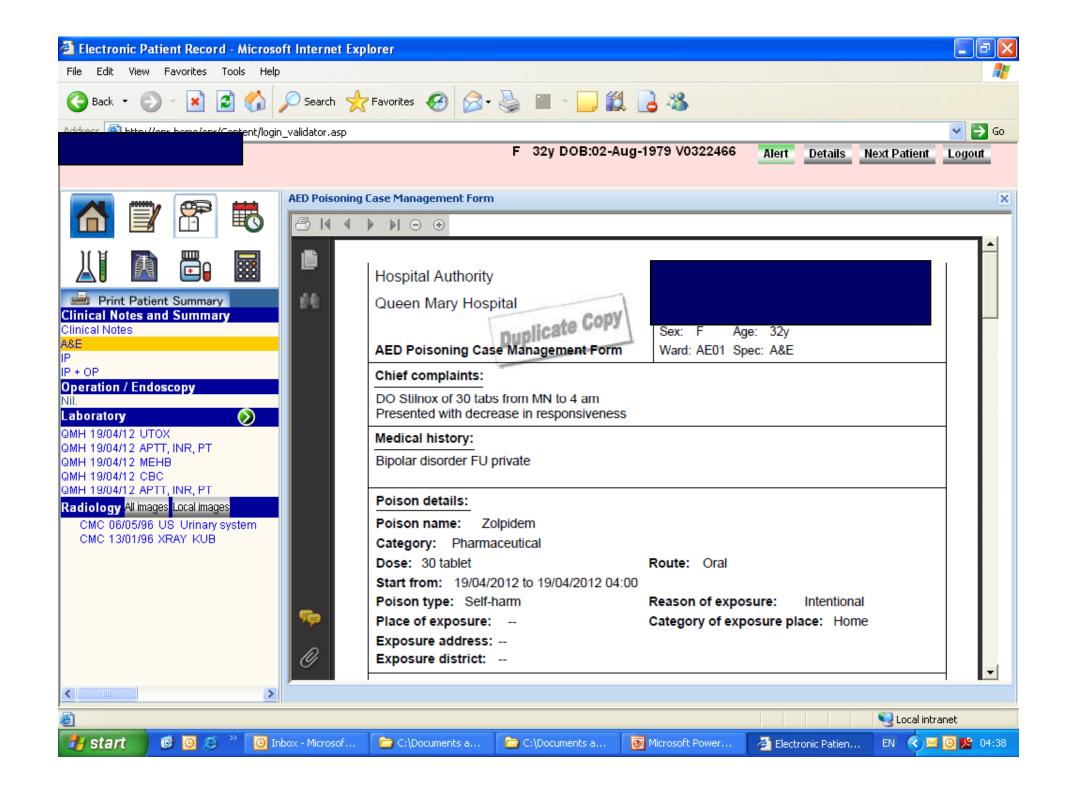
Strychnine

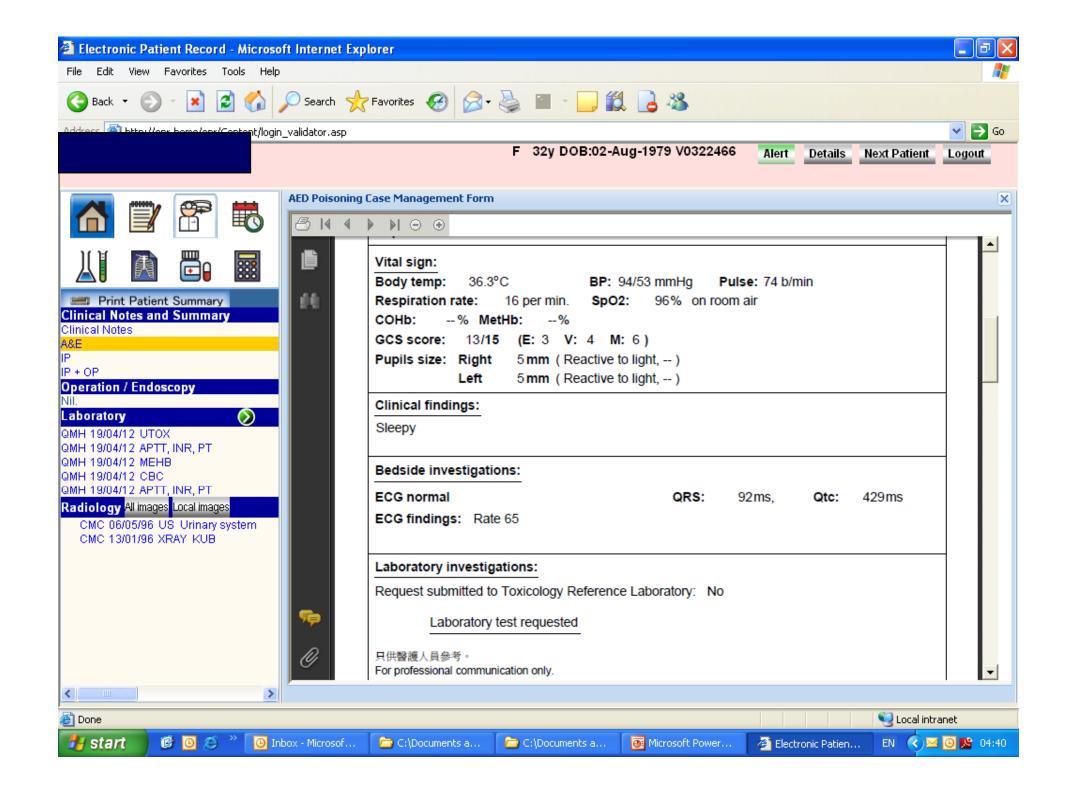
TABLE 6-5. Xenobiotics of Concern that are

Ethylene glycol

Fentanyl

Serotonin reuptake inhibitors




What is meant by good communication?

Input important clinical information into the laboratory request form; esp Toxidrome, suspected culprit drug or class of drugs

Electronic poisoning form in CMS

Direct discussion with laboratory counterparts concerning your worry and see what helps they can offer

What is meant by good communication?

Input important clinical information into the laboratory request form; esp Toxidrome, suspected culprit drug or class of drugs

■ Electronic poisoning form in CMS

Direct communication with laboratory counterparts concerning your worry and see if what helps they can offer

GHB

- rapidly absorbed and metabolized
- Mean elimination half-life is 30 to 50 minutes
- Detection period:
 - <6-8 hrs in plasma</p>
 - <10-12 hrs in urine</p>
- Preferred specimen: first catch urine

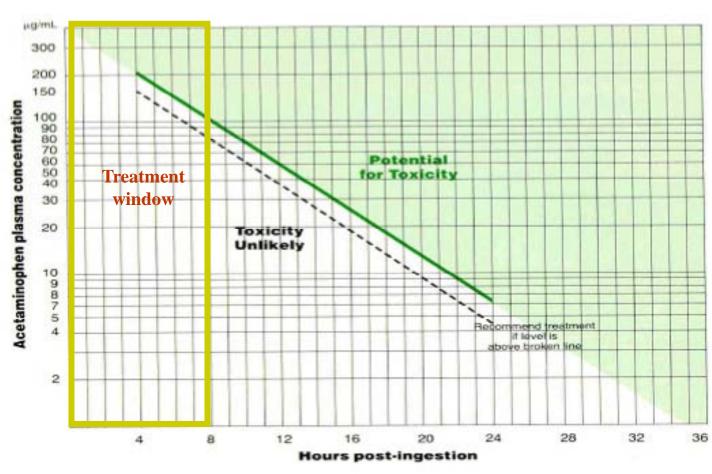
In QMH: Targeted analysis with GC-MS is necessary for detection of GHB and must be specifically requested.

In our case: Marked excretion of GHB was detected in the urine and diagnosis was confirmed

Commandment 5

Toxicology tests should be performed and interpreted timely

Have you got some examples in your mind?


Paracetamol poisoning

- F25, DO of paracetamol 20 tabs 5 hours ago before presentation to A&E
- Together with beer, vomited twice
- Paracetamol level checked in A&E (6 hours post ingestion)
- Patient admitted EMW but

■ No one remember to trace the result...

Paracetamol normogram

Rat poison ingestion

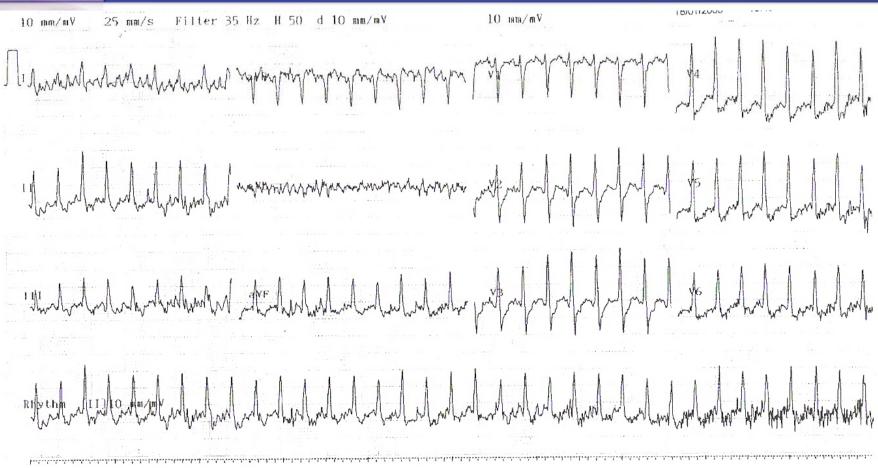
- Warfarin or superwafarin: expected delay for prolongation of INR:
 - Time needed to deplete the existing store of Vit
 - 2. Time needed to deplete the existing coagulating factors (VII)
- \sim 3 x T_{1/2} of Factor VII = 15 hours

Rat poison ingestion

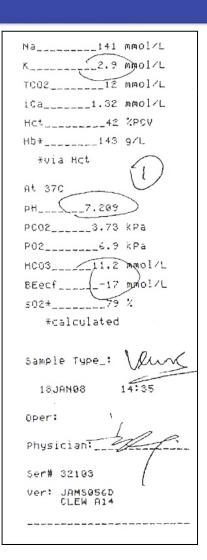
For acute accidental ingestion and symptomatic: repeat INR at 48 hours to clear patient

For intentional overdose: check baseline, then every 12 hours to identify coagulopathy. Increase frequency of monitoring if INR prolongation occurs

Case


- F/45, asthma FU QMH
- Depression FU Western Psychiatric Centre
 - Venlafaxine
 - Zolpidem
- C/O: Dizziness, vomiting and generalised weakness for 1/7
- BP 111/53 mmHg, P 117 bpm
- Temp 36°C
- RR 16/min, SpO₂ 98% R.A.
- Noticed to have intermittent limb twitching in cubicle

- GCS 15/15 all along, restless⁺, agitated⁺
- CVS: tachycardia, irregular pulse⁺, no murmur
- Resp: unremarkable except tachypnoea
- CNS:
 - Tone normal at rest
 - Intermittent 4 limbs twitching and spasm
 - Power full over 4 limbs
 - No neck rigidity, pupils E/R bilaterally
- Abdomen: NAD



ECG

- CXR: normal findings
- H'stix = 15.3mmol/L
- Serum ketone = 0.8 (low)
- Urine tests
 - Acon test all –ve
 - WBC -
 - RBC -
 - Glucose +++
 - Albumen –
 - Ketone +++

Causes to consider

- Metabolic cause
 - DKA
 - Thyroid storm
- Cardiovascular cause
 - Myocarditis
 - Cardiomyopathy
- Sepsis
- CNS disease
 - ICH

Poisoning to be considered

- Theophylline
- Salicylates

But patient strongly denies DO

Progress

- Urgent theophylline level arranged with Clinical Biochemist
- They can give us the result in half hour!

Collect Dat Collect Tim Request No. Remark	e :	16:00	16:00 C1183097 ASTHMA	01:25	19/01/08 06:00 C1190123 THO OVERDOSE	06:00	Ref. Range	Units
Theophyllin	e		NOTE	229 H	202 H	83	See Below	umol/L
Paracetamol		<30				44	See Below	umol/L
Salicylate		<0.3 L					1.4 - 1.8	mmol/L
Ethanol		<3.0					Toxic >33	mmol/L
Comment:								
08C1206004	Resul	t Faxed.						
08C1190123	Resul	t Faxed.						
08C1196002	Taken	150mg BC(pm), time	& date unk	mown.			
08C1183097			(pm), time	e & date ur	known. The	ophylline=	900 umol/L	
08C1183095			-					
Footnotes:								
Theophyll	ine	- Refer	ence Range	: Therape	eutic 28-11	1		

Commandment 6

 One should know which drug/toxin levels have to be done; which really affect patient management

Drug/Toxin levels that affects management

COHb, MetHb	Paracetamol
Digoxin	Salicylate
Ethanol	Theophylline
Iron	Valproate
Lithium	

•Recommended by COC (Path) to be available round the clock

Ethanol level

- Should we routinely check ethanol level in drunk patients?
- From time to time there are drunk patients dead in A&E because of complications or other missed diagnosis
- Some clinicians recommend checking ethanol levels for all drunk patients
- Practical difficulty in situation in HK

My baseline

Patient in deep coma

 Patient with prolonged depression of conscious level with no improvement upon observation

Patient with atypical presentation

Many more drug levels are not useful in patient management

Pharmacology

Original Paper

Pharmacology 2011;88:260–265 DOI: 10.1159/000331867 Received: July 29, 2011 Accepted after revision: August 8, 2011 Published online: October 13, 2011

Metformin-Associated Lactic Acidosis in Chinese Patients with Type II Diabetes

Chun Wing Yeung^a Ho Yin Chung^b Bonnie Mei Wah Fong^a Nga Wing Tsai^c Wai Ming Chan^c Tak Shing Siu^a Sidney Tam^a Sik Hon Tsui^b

^aDivision of Clinical Biochemistry, ^bDepartment of Accident and Emergency, and ^cAdult Intensive Care Unit, Queen Mary Hospital, Hong Kong, SAR, China

Risk factors of mortality were identified as shock and high plasma lactate levels. The majority of patients were found to have significantly raised creatinine versus a normal baseline value before the acute illness. Concomitant illnesses taking place alongside MALA were common. With a high utility rate of renal replacement therapy (82.6%) in the study group, the mortality rate was 30.4%.

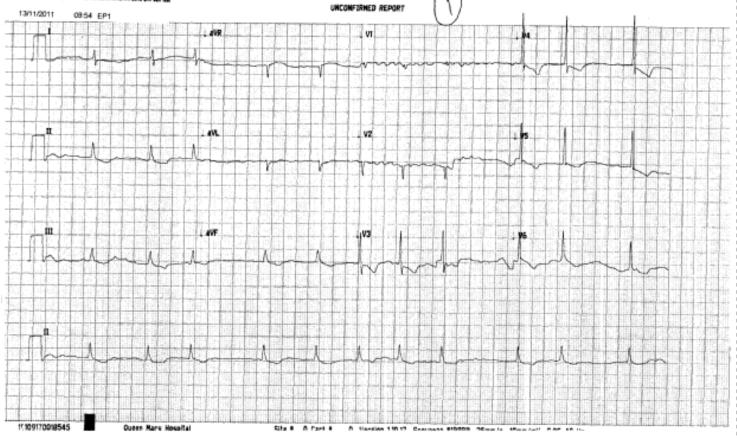
Copyright © 2011 S. Karger AG, Basel

Case

- F / 91yo
- HT, AF with VVIR, dementia
- Accidentally took 8 times the normal dose of medications
 - Aspirin (x80mg)
 - Digoxin (x62.5mcg)
 - Lisinopril (x2.5mg)
 - Adalat Retard (x20mg)
- Last dose 30min before admission

Case

- Alert
- BP 79/39 P 89
- Temp. 36.1°C
- GCS 15/15
- Glucose 8.4
- Hb 10.9
- Na/K 140/4.1


GMH DOB: 27/08/1920 F/ 97 y

(A&E)

13-Nov-2011 09:09:23

Vent rate: 69 BPM PR int: 0 ms GRS dur: 75 ms GT/GTC: 344/363 ms P-R-T axes: 999 85 -81 ATRIAL FIBRILLATION
SEPTAL INFARCT (40+ MS Q HAVE IN VU/V2), ASE UNDETERMINED
ST 8 T HAVE ABNORMALITY, POSSIBLE ANTEROLATERAL ISCHEMIA (-0.3+ MV T WAVE IN V2-V6) OR
DIBITALIS EFFECT
ST 8 T MAVE ABNORMALITY, POSSIBLE INFERIOR ISCHEMIA (-0.1+ MV T WAVE IN II/AVF) OR
BOSITALIS EFFECT
ASNORMAL ECG

推翻翻译群語語語報音問目推進

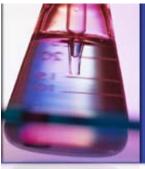
Calcium and IV fluid given

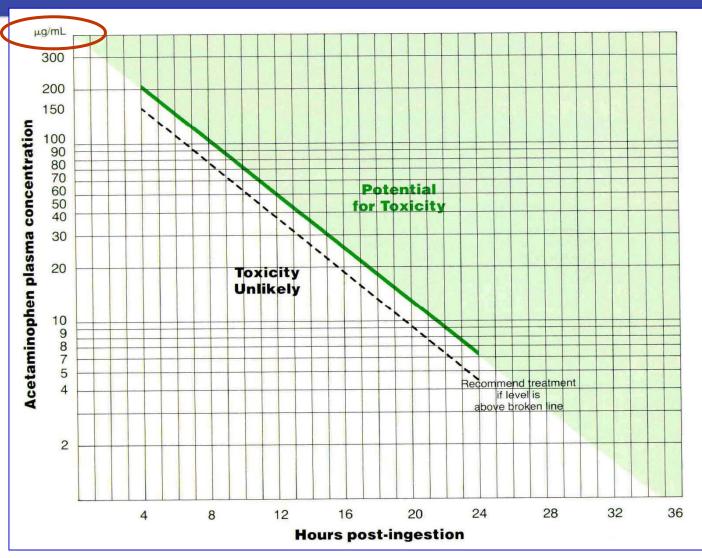
F. OBSERVATION/VITAL SIGNS							13/11/2011 60:04					
BP .	Pulse	0886		A19.	न्भ.	0954	.0937	8942	0950.	號	lapf	1016
260	260	3								-100		
240	240	(g/# (s)										
220	220	8.										
200	200	٤										
180	180	68/16										
160	160	BP: 3										
140	140	RC B										121
120	120						67	102	199	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	[6 <u>7</u>	
100	100	0	95'	91	94	98	^		~	77	2	
80	80	79.5	₹	10	4	-81	73-	76 ×-	76	*-	7)	74
60	60			69			7	6	V	17	60	\.
40	40	¥6.	43.	43	{ {8}	48	50	49	47.	- 1		ΨP

- Digoxin level came back soon: 11.2 nmol/L
- Reference level: 1.3 2.6 nmol/L
- Digitalis antibody was given

Was the treatment indicated?

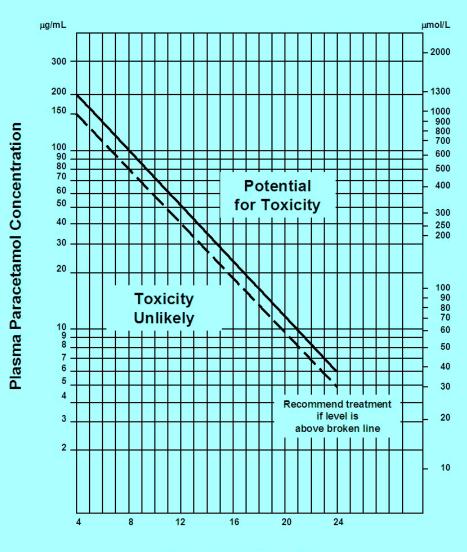
Criticism


- Patient was stable at that juncture; no clinical indication
- Action level quoted by HKPIC was>12nmol/L for acute toxicity
- However it refers to post distribution, i.e. >6 hours post ingestion


Commandment 7

Treat the patient, not the laboratory result

Be careful with the Units (Conventional vs SI) for laboratory results and take reference to individual laboratory reference levels when making clinical decisions



Paracetamol normogram

Nomogram for Paracetamol Poisoning

Hours Post-Ingestion

Unit conversion : 1mg/L (or $\mu g/mL$) = 6.6 $\mu mol/L$

(adapted from the HKPIC Nomogram)

Commandment 8

Be familiar with the use and interpretation of common tests that are very useful for poisoning diagnosis and management

Examples include

- COHb, MetHb levels
- RFT
- Blood gas analysis
- Lactate
- Anion Gap
- Osmolar Gap (serum osmolarity)

Case

- M/45, chronic alcoholic
- c/o palpitation, chest & epigastric discomfort, SOB for 1/52
- Poor oral intake, vomiting +
- GCS 15, BP 115/73, P 141, RR 28, SpO₂
 100% in RA, Temp 36.7C
- P/E: mild dehydration, chest clear, no abd. sign

Case

	Not Specified 15/11/06 18:22 CT753564 URGENT	Reference Range	Units	
Blood pH	7.09 L	7.35 - 7.45		
Blood pCO2	1.42 L	4.70 - 6.00	kPa	
Blood pO2	18.25 H	10.60-13.30\$	kPa	
Base Excess(vt)	-24.3 L	-3.0 - 3.0	mmol/L	
Bicarbonate(act)	3.1 L	20.0 - 26.0	mmol/L	
O2 Saturation	98	>95	ક	

- How to interpret?
- What additional information do you need?

Analysis

- pH 7.09 → Acidaemia
- Acidaemia with low HCO₃ level 3.1 (20 26)
 - → metabolic acidosis
- Metabolic acidosis with low pCO₂ 1.42
 (4.7 − 6) → respiratory compensation occurs
- Is the respiratory compensation appropriate /adequate or in fact hyperventilation occurring?

Winter's equation

- Predicts the degree of respiratory compensation in the setting of metabolic acidosis
- \blacksquare PCO₂ (mmHg) = (1.5 x HCO₃) + 8 +/- 2
- In our case: calculated PCO₂ = 1.5 x 3.1 + 8 +/- 2 = 12.65 +/- 2 mmHg
- Measured blood PCO₂ = 1.42 kPal = 1.42 x 7.5 =
 10.65 mmHg
- Conclusion: Metabolic acidosis with respiratory compensation

A case of severe metabolic acidosis

More information that may help your case analysis

- Na 147, Cl 91
- Glucose 3.3
- Urea 3.3, ethanol level 38
- Serum osmolarity 355
- Serum lactate: 6.3mmol/L (0.5-2.2)

Anion gap

- Na CI HCO3 = 147 91 3.1 = 52.9 (normal 12+/-4)
- Osmolar gap = Measured osmolality calculated osmolarity
 - Calculated osmolarity
 - Na x 2 + urea + glucose + ethanol (all in mmol/L)
 - \blacksquare 147 x 2 + 3.3 + 3.3 + 38 = 338.6

Measured serum osmol 355

 \bigcirc OG = 16.4 (normal -10 to 14)

High AG metabolic acidosis (52.9)

- Lactate: 6.3
- Urine ketostix® negative
- Urine ketones by laboratory (acetoacetate and β-hydroxybutyrate): 50mg/dL ++
- Consider KULT

Dx: Alcoholic ketoacidosis

Commandment 9

Do no harm!

- E.g. Multi-panel metal testing on hair or mobilized urine samples
- For children with eczema, autism, hyperactivity, poor academic performance...
- Result bound to be positive for some panels

Case

- F36, good PH
- Paracetamol overdose, claimed 20 tabs
- Delayed presentation at 12 hours
- Epigastric pain and vomiting
- NAC given

Mx in EMW

Collect Date : 13/10/09 13/02/11 Collect Time : 17:12 14:48 Request No. : CA130761 C2131662 Remark : left Panadol

neck overdose

mass

Na	140	140
K	4.4	3.4 L
Chloride	106	110 H
Urea	4.3	3.7
Creatinine	57	59
R Glucose		7.3
Calcium		2.23
Adjusted Calcium		2.21
Phosphate		0.87 L
Total Protein	80	72
Albumin	42	43
Globulin	38	29
Total Bili	4	14
ALP	64	55
ALT	28	49 H
AST	36 H	35 H
GGT		38 H
LDH		152
CK		65
Urate		252

Collect Date : 13/02/11 Collect Time : 14:48 Request No. : C2133026 Remark : Panadol overdose. Therapeut ic Paracetamol 240 Salicylate <0.3 L Ethanol < 3.0

Serial LFT

Collect Date : 13/02/11 14/02/11 15/02/11 15/02/11 15/02/11

Collect Time : 14:48 07:14 05:40 14:54 21:52

Request No. : C2131662 C2141428 C2151397 C2152771 C2161259 Ref. Range Units

Remark : Panadol panadol panadol panadol panadol overdose overdose overdose overdose.

panadol

overdose

Comment		Below	Below	Below	Below		
Na	140	136	137		142	136 - 148	mmol/L
K	3.4 L	3.0 L	3.7		3.6	3.6 - 5.0	mmol/L
Chloride	110 H	107	107		107	100 - 109	mmol/L
Urea	3.7	2.2 L	2.4 L		2.2 L	2.5 - 6.4	mmol/L
Creatinine	59	50	41 L		46 L	49 - 82	umol/L
R Glucose	7.3		4.9		8.4 H	2hr pp < 7.8	mmol/L
Calcium	2.23					2.11 - 2.55	mmol/L
Adjusted Calcium	2.21					2.11 - 2.55	mmol/L
Phosphate	0.87 L					0.88 - 1.45	mmol/L
Total Protein	72	62 L	61 L	59 L	64 L	67 - 87	g/L
Albumin	43	36 L	37 L	33 L	37 L	39 - 50	g/L
Globulin	29	26	24 L	26	27	26 - 40	g/L
Total Bili	14	13	11	11	12	4 - 23	umol/L
ALP	55	50	46	48	51	32 - 93	U/L
ALT	49 H	279 H	639 H	2596 H	>3000 H	7 - 36	U/L
AST	35 H	331 H	511 H	2210 H	2643 H	14 - 30	U/L
GGT	38 H				55 H	up to 35	U/L
LDH	152					107 - 218	U/L
CK	65					40 - 161	U/L
Amylase					140 H	25 - 124	U/L
Urate	252					177 - 400	umol/L

Commandment 10

Don't hesitate to consult the experts if needed

Suggested Management

Frequent clinical evaluation and monitoring

 Check prognostic markers: ABG, RFT, PT, Lactate, PO₄, αFP

Continue NAC

Monitor LFT

When to stop NAC?

Textbook guideline:

Asymptomatic

AST / ALT <1000</p>

Negligible paracetamol level

When to stop NAC?

15/02/11 16/02/11 16/02/11 16/02/11 17/02/11

Collect Date :	15/02/11		16/02/11				
Collect Time :	21:52	07:01	07:01	15:30	05:11		
Request No. :						Ref. Range	Units
Remark :	-	-	panadol	-	-		
			overdose.	overdose	overdose		
	panadol	liver	liver				
		damage	_				
Comment	Below		Below	Below	Below		
Na	142		139	143	145	136 - 148	mmol/L
K	3.6		3.7	3.6	4.0		
Chloride	107		105	109	112 H	100 - 109	mmol/L
Urea	2.2 L		2.0 L	1.8 L	2.0 L	2.5 - 6.4	mmol/L
Creatinine	46 L		40 L	44 L	46 L	49 - 82	umol/L
R Glucose	8.4 H		5.3	5.4	4.3	2hr pp < 7.8	mmol/L
Calcium			2.13	1.99 L	2.15	2.11 - 2.55	mmol/L
Adjusted Calcium			2.27	2.15	2.25	2.11 - 2.55	mmol/L
Phosphate			0.89	0.78 L	0.91	0.88 - 1.45	mmol/L
Total Protein	64 L		61 L	60 L	63 L	67 - 87	g/L
Albumin	37 L		35 L	34 L	37 L	39 - 50	g/L
Globulin	27		26		26	26 - 40	g/L
Total Bili	12		11		10	4 - 23	umol/L
ALP	51		45	47	43	32 - 93	U/L
ALT	>3000 H		>3000 H	2824 H	2296 H	7 - 36	U/L
AST	2643 H		1604 H	982 H	418 H	14 - 30	U/L
GGT	55 H		55 H	57 H	61 H	up to 35	U/L
Amylase	140 H		105			25 - 124	U/L
Lactate		0.9				0.7 - 2.1	mmol/L

Expert opinion

- AST (cytosolic and mitochondrial) vs. ALT (cytosolic)
 - AST higher intracellular abundance
 - AST shorter half-life
 - AST initially higher than ALT
 - AST declines more rapidly due to shorter T_{1/2}
- AST the better marker to gauge the clinical course

Take home message

- Rely on your clinical judgment; perform a test only when it is indicated
- 2. Know the implications and limitations of the tests concerned

3. Have a fair idea what tests are provided by your hospital laboratory, cluster laboratory and Toxicology Reference Laboratory

Take Home Message

- 4. Maintain good communication with your laboratory counterparts
- Toxicology tests should be performed and interpreted timely
- 6. Know which drug/toxin levels that will affect your patient management

Take Home Message

- 7. Treat the patient, not the laboratory result; and beware of the units
- 8. Be familiar with other common tests that are very useful for poisoning management
- 9. Do no harm!
- 10. Consult the experts

Thank you!